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Introduction 

Since the introduction of human insulin for the treatment of diabetes, the use of 

biopharmaceuticals for the treatment of human disease and illness has rapidly increased [1]. 

Biopharmaceuticals allow for the treatment of diseases with few side effects whereas typical 

pharmaceuticals may be less effective or exhibit harmful side effects. One major field of 

medicine in which biomolecules have been making an impact is in the treatment of ocular 

diseases. In 2010, the number of visually impaired people worldwide was approximately 285 

million, of which 39 million people were blind [2]. The most common diseases that significantly 

affect vision are age-related macular degeneration (AMD), diabetic retinopathy, cataracts, 

uveitis, keratitis, and glaucoma [3]. There already exists a number of biomolecules for 

ophthalmic indications approved by the FDA such as aptamer, pegatanib and ranibizumab [4], 

with many more in clinical trials. As the sales of ophthalmic biopharmaceuticals are expected to 

exceed $8 billion in 2016, there is a significant market for improvements in ophthalmic 

treatments [4].  

 

In many cases, biopharmaceuticals are large molecules (macromolecules) that cannot be 

delivered effectively via conventional methods such as topical delivery, or eye drops. The large 

size of the macromolecules limits the diffusion across the layers of the ocular tissue and renders 

topical application ineffective (Figure 1). One common method of ophthalmic macromolecule 

delivery involves weekly or monthly intravitreal injections that must be performed by an 

ophthalmologist [5]. To maximize the effectiveness of the drug, the drug should be delivered 

locally to the site of action. Because the eye is small in size and has a large number of distinct 

tissues, targeted drug delivery to a specific tissue within the eye is especially difficult.  

 

Figure 1. Challenges of ophthalmic macromolecule delivery [3] 

 
 

In this project, we aim to explore the use of microneedles for ophthalmic delivery of 

macromolecules. Drug delivery via microneedles has already been proven to be an effective 

delivery modality for biologics in the skin (Figure 2). Currently, transdermal microneedles are 

being used to deliver macromolecules such as proteins, RNA, and pDNA to the epidermis of a 

patient by bypassing the stratum corneum and delivering directly into the epidermis [6]. 

Microneedle patches are coated with a water-soluble drug solution that dissolves after insertion 

and diffuses into the target tissue [6]. In a similar fashion, we suggest that microneedles can be 
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used in ophthalmic drug delivery--more specifically, the use of microneedles to bypass the low 

diffusive corneal epithelial layer and to deliver macromolecules to the corneal stromal layer. 

 

Figure 2. Example of transdermal microneedle patch (R. Prausnitz Lab) 

 
 

Microneedle Model 

Our model demonstrates diffusion of an ophthalmic drug across the cornea via a coated 

microneedle. We model the diffusion as a 1-D single slab problem along the visual axis of the 

eye and assume that the drug is released instantaneously after insertion into the most anterior 

portion of the corneal stroma (posterior of the epithelial layer), as shown in Figure 3, and 

modeled by the impulse function in our initial conditions. After being released, the drug diffuses 

into the stroma and is simultaneously absorbed by the local stromal cells—the target tissue.  

 

Our second assumption is that the diffusion of the drug is not affected by its charge or 

polarity. We also assume that the cornea is a flat slab and that the drug does not diffuse into the 

aqueous humor and cannot diffuse backwards into the epithelial layer, implemented by our zero-

flux boundary conditions. The tissue porosity and absorption coefficient of the drug were taken 

from literature on porcine and rabbit corneal stroma, respectively [7,8]. The average thickness of 

the corneal stroma and epithelial layers are 50 um and 50 um, respectively [9]. The parameters of 

our model are summarized in Table 1. Using Fick’s law of diffusion with an added term to 

simulate consumption of the drug, we solved the governing equation for the microneedle model 

to determine the concentration profile of the drug across time and space (Appendix A).  

 

Topical Delivery Model  
In order to show that microneedles are more effective in delivering macromolecules to 

corneal stroma, we also modeled drug delivery via topical application, or eye drops (Figure 3). In 

this model, the ophthalmic drug must first diffuse across the epithelial layer and then through the 

stroma to reach the target cells. The two layers have different diffusion coefficients, as molecules 

Governing Equation:                  
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
−

𝛽

1−𝜀
𝐶 

 
IC:                 𝐶(𝑥, 0) =  𝐶0𝛿(𝑥) 

BC:     
𝜕𝐶

𝜕𝑥
(0, 𝑡) = 0             

𝜕𝐶

𝜕𝑥
(𝐿, 𝑡) = 0 

 

Analytical Solution:   𝐶(𝑥, 𝑡) = ∑
2𝐶0

𝐿
cos (

𝑛𝜋𝑥

𝐿
) 𝑒

−((
𝑛𝜋

𝐿
)2𝐷+

𝛽

(1−𝜀)
)𝑡∞

𝑛=0  
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diffuse more readily through the stroma than the epithelium. Although more accurately 

represented by a two-slab diffusion model, we simplified the diffusion of the drug to a lumped-

parameter model. Rather than taking the average of the two diffusion coefficients, we decided to 

account for the difference in the diffusivity throughout the lumped parameter model by 

implementing a hyperbolic function into our governing equation, which should more accurately 

reflect the difference of the layer thicknesses.  

 

Diffusion  coefficient for lumped-parameter 

model:  

According to this function, the diffusion coefficient is no longer a constant and now 

changes with respect to position within the slab. We chose an appropriate value for k so that 

Depithelium is dominant within the first 10% of the slab, while Dstroma is dominant within the last 

90% of the slab. Because the diffusivity is a function of position, it becomes difficult to solve the 

governing equation analytically. Therefore, to approximate the efficacy of topical drug delivery, 

we used numerical methods—namely, Matlab’s PDEPE and finite differences—to generate a 

diffusion profile. 

 

 

Table 1. Parameter Values and Physiological Meaning 

 
 

D x( ) =Depi + Dstroma -Depi( ) 1-ekx( )
 

Figure 3. Illustration of microneedle versus topical drug delivery of macromolecules 

 



 6 

Results and Discussion of Microneedle Model  

An analysis of the surface plots and the 2-D concentration profiles (Figures 4-12) for the 

analytical, finite differences, and PDEPE solutions of the microneedle drug delivery model show 

that all three methods approximate similar concentration profiles. (Note: All graphs display 

normalized concentration). From the general trend of the curves, we can see that after the first 

100 seconds, all the concentration profiles tend toward a low, nearly zero value. As we have 

homogenous zero-flux boundary conditions, it is expected that the concentration would tend 

towards a steady-state value. However, our models do not reach steady-state in the amount of 

time we prescribed because there is a slow consumption that occurs in the tissue. Only after all of 

the drug is fully consumed will the concentration profile reach steady-state. In our model, it is 

apparent that the rate of diffusion is much more rapid than the rate of consumption. 

 

 

 

 

 

Figures 4-6. Analytical, finite differences and PDEPE solutions as surface plots  
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Figures 7 & 8. Analytical solution: 2-D concentration profiles for microneedle delivery 

 

 

Figure 9 & 10. Finite differences: 2-D concentration profiles for microneedle delivery 

 

Figure 11 & 12. Matlab PDEPE: 2-D concentration profiles for microneedle delivery 
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Both numerical methods approach about the same concentration values, peaking at 

approximately 0.012 at both length L/10 and at time t/10 (Figures 9-12); the analytical method 

demonstrates similar profiles, although the values were approximately 60% greater than those of 

the numerical solutions, as shown by the peak value of 0.02 at length L/10 and time t/10 (15 s) in 

Figures 7 and 8. This discrepancy may be due to the number of iterations run (n=100); a larger 

number of iterations may help to more accurately reflect the solution. Although the two 

numerical methods show very similar results, there are still slight differences in the values of 

each method, which can be attributed to their respective limitations.   

 

Limitations of Analytical, Finite Differences and PDEPE Methods 

Using the analytical solution, Matlab cannot implement a dirac delta function and must 

be approximated by an infinite summation; on the other hand, the numerical methods can 

implement the dirac delta function relatively well. For the analytical model, we ran 100 

iterations, which ignores all the higher eigenmodes. Theoretically, to achieve the most accurate 

analytical solution, we would need to perform the summation over an infinite number of 

iterations. Although the low number of iterations saves a great amount of computation time and 

power, it comes at the detrimental cost of accuracy, which is evident in our model: the analytical 

solution begins at a negative concentration due to the oscillatory behavior from the cosine term 

and the position we chose to observe. 

 

One major limitation of the finite differences method is that it is intolerant of changes to 

dt and dx; reducing dx causes the step size to increase significantly, which requires a two-fold 

decrease in dt to compensate. Thus, in order to achieve good spatial resolution, dx and dt must be 

reduced, which causes an increase in number of time steps and computation time.  

 

The greatest limitation of PDEPE is the number of iterations it can run before requiring 

excessive computational time and power, similar to the limitations of the analytical and finite 

differences method. Amongst the three methods, given a discrete amount of computational time 

and power, PDEPE seemed to provide us with an accurate approximation of the solution with the 

least amount of effort needed for optimization (unlike the required optimization of the number of 

summations for the analytical solution, and of the step size for the finite differences method).  

 

Results and Discussion of Topical Delivery Model  

After verifying that the numerical methods provided good approximations of the 

microneedle delivery profiles, we can now utilize these same methods to approximate the 

solution to the governing equation of the topical delivery lumped-parameter model without 

solving it analytically. Using the topical delivery model, limitations of the finite differences 

methods become more apparent and significant. As seen previously, the finite differences 

method is intolerant in of changes to parameter values. For example, if Dstroma is less than 

Depithelium, the step size becomes a negative term, causing oscillations centered at zero. The finite 

difference method is also limited by its nature: because the step size is a function of diffusivity, 

and in turn the diffusivity of the lumped-parameter model is a function of position, the step size 

changes with each iteration. With each iteration, errors accumulate, providing us with an 

inaccurate approximation of the solution (Figures 13-16). Therefore, in order to compare the 

microneedle delivery to the topical delivery, solely PDEPE was used. 
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 An analysis of the graphical and numerical data using PDEPE allows us to compare the 

efficacy of microneedle (Figures 11 & 12) and topical drug delivery (Figures 15 & 16) at varying 

times and positions. For the concentration versus time plots, the concentration is higher in the 

topical model at a given position, so we can infer that a greater concentration of the drug has 

penetrated deeper into the tissue for the microneedle delivery. In the concentration versus 

position plots, the trend of the curve determines how far the drug has diffused into the tissue. 

With the topical model, the curve is steeper than its microneedle counterpart and has diffused 

over a shorter length in the same period of time. These results are expected because the drug 

must first diffuse through a layer with a much lower diffusivity coefficient.  

 

Model Limitations and Adjustments 

Due to the mathematical simplifications and boundary conditions applied, the models for 

microneedle patch and topical drug delivery require further work to simulate experimental 

conditions. Limitations within our mathematical model resulted from the chosen diffusion 

coefficients, numerical method setup, and the lumped parameter characteristics. The model also 

ignored biological factors that would affect drug delivery. 

Figures 15 & 16. Matlab PDEPE solutions 2-D concentration profiles for topical delivery 

 

Figures 13 & 14. Finite differences: 2-D concentration profiles for topical delivery

 



 10 

 

The concentration and time scale vary depending on the diffusion coefficient chosen. 

Initially, we modeled our macromolecule on unoprostone, an ocular drug typically delivered via 

eye drops. As there was little data on unoprostone’s diffusion coefficient, we used the diffusion 

coefficient in corneal tissue of a molecule with similar molecular weight. However, the value is 

dependent not only on size, but shape and interactions with the solvent [10]. Moreover, the 

diffusion coefficient becomes a function of location in the hyperbolic model, whereas normally it 

is a function of the variables discussed previously. A two-slab model with distinct diffusion 

coefficients, diffusion equations, and boundary conditions would solve this problem, as well as 

consumption in the epithelial tissue. Using a lumped-parameter model causes consumption to 

occur in both layers, though the drug targets corneal tissue only. The diffusion equation for the 

two-slab model would use Fick’s law of diffusion and the diffusion with consumption. Without 

uptake in the epithelial layer, the diffusion profile would be expected to have a small time delay 

before concentration decreases due to the consumption term. 

 

When creating our model, we assumed that the cornea is a flat slab, but it is actually a 

curved layer that varies in thickness between different people. In addition, eye conditions such as 

astigmatism cause it to be uneven in thickness. A two or three-dimensional model would provide 

a more accurate look of diffusion in the curved surface. Future work would focus on translating 

our model from one-dimensional diffusion to a three-dimensional analysis that includes 

characteristics of the microneedle patch, such as flux due to timed release and needle geometry, 

spacing, width, number, and length. 

 

Conclusion 
 Using analytical and numerical methods, we have analyzed the diffusion of 

macromolecules into the cornea for two modalities of drug delivery: topical eye drops and 

microneedle patch. Our goal was to compare the rate of diffusion between the two systems, as 

the optimal system would diffuse through the cornea rapidly and bind to corneal stroma tissue. 

As we hypothesized, the microneedles (one-slab model) delivered the drug at a faster rate than 

the topical application (lumped-parameter model), as it bypassed the epithelial layer with a lower 

diffusivity. Though the PDEPE and finite differences model show slight variation in magnitude 

for the microneedle model, the general shape of the 2-D curves and surface plot exhibit the same 

trends. A side-by-side comparison of the topical and microneedle drug delivery models using the 

PDEPE method show that the macromolecule diffuses faster in the latter model. Since we have 

greatly simplified the microneedle patch, a more complex model with more realistic assumptions 

would be needed to further study the diffusion profile in vivo. However, with the apparent 

improvement in drug delivery efficacy via microneedles, this may be a fast and pain-free method 

used in the future to treat ophthalmic conditions.  
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APPENDIX A. Analytical Solution 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
−

𝛽

1 − 𝜀
𝐶 

 
𝐼. 𝐶. ∶ 𝐶(𝑥, 0) =  𝐶0𝛿(𝑥) 

𝐵. 𝐶.: 
𝜕𝐶

𝜕𝑥
(0, 𝑡) = 0              

𝜕𝐶

𝜕𝑥
(𝐿, 𝑡) = 0 

𝐶(𝑥, 𝑡) = 𝑋(𝑥) ∗ 𝑇(𝑡) 
 

𝜕(𝑋(𝑥) ∗ 𝑇(𝑡))

𝜕𝑡
= 𝐷

𝜕2(𝑋(𝑥) ∗ 𝑇(𝑡))

𝜕𝑥2
−

𝛽

1 − 𝜀
(𝑋(𝑥) ∗ 𝑇(𝑡)) 

 

𝑋(𝑥)
𝑑𝑇

𝑑𝑡
= 𝐷 ∗ 𝑇(𝑡)

𝑑2𝑋

𝑑𝑥2
−

𝛽

1 − 𝜀
𝑋(𝑥) ∗ 𝑇(𝑡) 

 
𝑑𝑇

𝑑𝑡
= 𝐷

𝑇(𝑡)

𝑋(𝑥)

𝑑2𝑋

𝑑𝑥2
−

𝛽

1 − 𝜀
𝑇(𝑡) 

 
𝑑𝑇

𝑑𝑡
+

𝛽

1 − 𝜀
𝑇(𝑡) = 𝐷

𝑇(𝑡)

𝑋(𝑥)

𝑑2𝑋

𝑑𝑥2
 

 
1

𝐷𝑇(𝑡)

𝑑𝑇

𝑑𝑡
+

𝛽

𝐷(1 − 𝜀)
=

1

𝑋(𝑥)

𝑑2𝑋

𝑑𝑥2
= −𝜆 

 
1

𝑋(𝑥)

𝑑2𝑋

𝑑𝑥2
= −𝜆 

 
𝑑2𝑋

𝑑𝑥2
+ 𝜆𝑋(𝑥) = 0 

 

𝑋(𝑥) = 𝐶2 cos(√𝜆𝑥) + 𝐶3 sin(√𝜆𝑥) 

 

𝑋′(𝑥) = −√𝜆 ∗ 𝐶2 sin(√𝜆𝑥) + √𝜆 ∗ 𝐶3 cos(√𝜆𝑥) 

 

𝑋′(0) = 0 = 0 + √𝜆 ∗ 𝐶3 
𝐶3 = 0 

 

𝑋′(𝑥) = −√𝜆 ∗ 𝐶2 sin(√𝜆𝑥)  

 

𝑋′(𝐿) = 0 = −√𝜆 ∗ 𝐶2 sin(√𝜆𝑥) 
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sin(√𝜆𝐿) = 0 

𝐿√𝜆 = 𝑛𝜋 

𝜆 = (
𝑛𝜋

𝐿
)2 

𝑋(𝑥) = 𝐶2 cos (
𝑛𝜋𝑥

𝐿
) 

 
1

𝐷𝑇(𝑡)

𝑑𝑇

𝑑𝑡
+

𝛽

𝐷(1 − 𝜀)
= −𝜆 

𝑑𝑇

𝑑𝑡
= −(𝜆𝐷 +

𝛽

(1 − 𝜀)
)𝑇(𝑡) 

1

𝑇(𝑡)
𝑑𝑇 = −(𝜆𝐷 +

𝛽

(1 − 𝜀)
)𝑑𝑡 

𝑇(𝑡) = 𝐶1𝑒
−(𝜆𝐷+

𝛽
(1−𝜀)

)𝑡
 

 
 

𝐶(𝑥, 𝑡) = 𝑋(𝑥) ∗ 𝑇(𝑡) 
 

𝐶(𝑥, 𝑡) = 𝐶2 cos (
𝑛𝜋𝑥

𝐿
) 𝐶1𝑒

−(𝜆𝐷+
𝛽

(1−𝜀)
)𝑡

 

 

𝐶(𝑥, 𝑡) = 𝐶𝑛 ∑ cos (
𝑛𝜋𝑥

𝐿
) 𝑒

−(𝜆𝐷+
𝛽

(1−𝜀)
)𝑡

∞

𝑛=0

 

 
𝐼. 𝐶. ∶ 𝐶(𝑥, 0) =  𝐶0𝛿(𝑥) 

 

𝐶𝑛 = 𝐶0

∫ 𝛿(𝑥)cos (
𝑛𝜋𝑥

𝐿 )
𝐿

0
𝑑𝑥

∫ cos (
𝑛𝜋𝑥

𝐿 )cos (
𝑛𝜋𝑥

𝐿 )𝑑𝑥
𝐿

0

 

 

𝐶𝑛 =
2𝐶0

𝐿
 

 

𝐶(𝑥, 𝑡) = ∑
2𝐶0

𝐿
cos (

𝑛𝜋𝑥

𝐿
) 𝑒

−((
𝑛𝜋
𝐿

)2𝐷+
𝛽

(1−𝜀)
)𝑡

∞

𝑛=0
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APPENDIX B. Matlab code for analytical model 

 
% Specifies parameters used in the analytical solution 
B = 0.0005; 
e = 0.5; 
D = 2e-6; 
L = .05; 
C0 = 0.1; 

  
% Defines boundaries for time and distance and creates mesh that the  
% analytical solution will be generated from 
steps = 1000; 
x = linspace(0, L, steps); 
t = linspace(0, 150, steps); 
[x, t] = meshgrid(x, t); 

  
% Generates the datapoints of the analytical solution 
n = 0; 
c = C0 * exp((-((n*pi/L)^2)*D-(B/(1-e))).*t) .* ... 
    (cos(((n*pi/L)).*x)); 
tic; 
for n = 1 : 100 
    c = c + (2*C0/L) * exp((-((n*pi/L)^2)*D-(B/(1-e))).*t) .* ... 
    (cos(((n*pi/L)).*x)); 
end 
toc; 

  
% Normalizes data 
c = c /(n*2*C0/L); 

  
% Generates 3D surface plot 
surf(t, x, c, 'EdgeColor', 'none'); 
caxis([0 .02]); 
zlim([0 0.02]); 
xlabel('time (s)', 'fontsize', 14); 
ylabel('position (cm)', 'fontsize', 14); 
zlabel('C/C0', 'fontsize', 14); 
title('Surface plot analytical model', 'fontsize', 15); 

  
% Generates 2D plot of concentration with respect to position 
figure 
hold on 
plot(t(:, 1), c(:, 100)'); 
plot(t(:, 1), c(:, 200)', 'r'); 
plot(t(:, 1), c(:, 500)', 'g'); 
plot(t(:, 1), c(:, 1000)', 'k'); 
hold off 
legend('t = 15s', 't = 30s', 't = 75s', 't = 150s'); 
xlabel('time (s)', 'fontsize', 14); 
ylabel('C/C0', 'fontsize', 14); 
title('Analytical Model Microneedle Delivery', 'fontsize', 14); 

  
% Generates 2D plot of concentration with respect to time 
figure 
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hold on 
plot(x(1, :), c(100, :)', 'r'); 
plot(x(1, :), c(200, :)', 'g'); 
plot(x(1, :), c(500, :)', 'k'); 
plot(x(1, :), c(1000, :)', 'c'); 
hold off 
legend('t = 15s', 't = 30s', 't = 75s', 't = 150s'); 
xlabel('length (cm)', 'fontsize', 14); 
ylabel('C/C0', 'fontsize', 14); 
title('Analytical Model Microneedle Delivery', 'fontsize', 14); 
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APPENDIX C. Matlab code for numerical methods 

 

clear all; 

close all; 
clc; 

  
% Diffusion coefficients of corneal stroma and epithelium 
global D1 D2 C0 B eps L tf R k i 
D1=2e-6; %corneal stroma 
D2=10e-9; %epithelial layer 
C0=.1; %initial concentration @ x=0, t=0 
B=.0005; %absorption rate 
eps=0.5; %porosity 
L=.05; 
tf=150; 
R=B/(1-eps); 
k=150; 

  
i=2;   % if i=1 run 1-slab if 1=2 then 2-slab 

  
% Step size 
dx=0.00025; 
dt=.015; 

  
% Domain 
xmesh=0:dx:L; 
tmesh=0:dt:tf; 

  
% Finite element method initiation of variables for 1 slab 
nx=length(xmesh); 
nt=length(tmesh); 
N1=D1*dt/(dx^2); 
a=R*dt; 
C1=zeros(nt,nx); 
C2=zeros(nt,nx); 
C1(1,:)=C0*(xmesh == 0); 
C2(1,:)=C0*(xmesh == 0); 

  
% Finite element method initiation of variables for 1 slab 

  
if i==1  

     
for t=1:(nt-1) 
    for x=2:(nx-1) 
        C1(t+1,x)=(1-a)*C1(t,x)+N1*(C1(t,x-1)-2*C1(t,x)+C1(t,x+1)); 
    end 
    C1(t+1,1)=C1(t+1,2); 
    C1(t+1,nx)=C1(t+1,nx-1); 
end 
C1=C1/C0; %normalized 

  
C1p = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 
C1p=C1p/C0; 
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figure (1) 
plot(tmesh,C1(:,floor(nx/10)),tmesh,C1(:,floor(nx/5)),tmesh,C1(:,floor(nx/2))

,tmesh,C1(:,floor(nx))); 
title('Finite Differences Microneedle Delivery','FontSize',14) 
xlabel('Time(s)','FontSize',14) 
ylabel('C/C0','FontSize',14) 
legend('L/10','L/5','L/2','L') 

  
figure(2) 
plot(tmesh,C1p(:,floor(nx/10)),tmesh,C1p(:,floor(nx/5)),tmesh,C1p(:,floor(nx/

2)),tmesh,C1p(:,floor(nx))); 
title('Matlab PDEPE Microneedle Delivery','FontSize',14) 
xlabel('Time(s)','FontSize',14) 
ylabel('C/C0','FontSize',14) 
legend('L/10','L/5','L/2','L') 

  
figure (3) 
plot(xmesh,C1(floor(nt/10),:),xmesh,C1(floor(nt/5),:),xmesh,C1(floor(nt/2),:)

,xmesh,C1(floor(nt),:)); 
title('Finite Differences Microneedle Delivery','FontSize',14) 
xlabel('Length(cm)','FontSize',14) 
ylabel('C/C0','FontSize',14) 
legend('t/10','t/5','t/2','t') 

  
figure (4) 
plot(xmesh,C1p(floor(nt/10),:),xmesh,C1p(floor(nt/5),:),xmesh,C1p(floor(nt/2)

,:),xmesh,C1p(floor(nt),:)); 
title('Matlab PDEPE Microneedle Delivery','FontSize',14) 
xlabel('Length(cm)','FontSize',14) 
ylabel('C/C0','FontSize',14) 
legend('t/10','t/5','t/2','t') 

  
figure(5) 

  
H2=surf(tmesh,xmesh,C1p') 
title('Matlab PDEPE Microneedle Delivery','FontSize',14) 
xlabel('Time(s)','FontSize',14) 
ylabel('Length(cm)','FontSize',14) 
zlabel('C/C0','FontSize',14) 
set(H2, 'linestyle', 'none') 
axis([0 tf 0 L 0 .02 0 1]) 
caxis([0 .02]) 

  

  
else  
for t=1:(nt-1) 
    for x=2:(nx-1) 
        C2(t+1,x)=(1-a)*C2(t,x)+(dt/(dx^2))*(D2+(D1-D2)*(1-exp(-

k*x*dx)))*(C2(t,x+1)-2*C2(t,x)+C2(t,x-1)); 

         
    end 
    C2(t+1,1)=C2(t+1,2); 
    C2(t+1,nx)=C2(t+1,nx-1); 
end 
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C2=C2/C0; %normalized 
C2p = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 
C2p=C2p/C0; 

  
figure (1) 
plot(tmesh,C2(:,floor(nx/10)),tmesh,C2(:,floor(nx/5)),tmesh,C2(:,floor(nx/2))

,tmesh,C2(:,floor(nx))); 
title('Finite Differences Topical Delivery','FontSize',14) 
xlabel('Time(s)','FontSize',14) 
ylabel('C/C0','FontSize',14) 
legend('L/10','L/5','L/2','L') 

  
figure(2) 
plot(tmesh,C2p(:,floor(nx/10)),tmesh,C2p(:,floor(nx/5)),tmesh,C2p(:,floor(nx/

2)),tmesh,C2p(:,floor(nx))); 
title('Matlab PDEPE Topical Delivery','FontSize',14) 
xlabel('Time(s)','FontSize',14) 
ylabel('C/C0','FontSize',14) 
legend('L/10','L/5','L/2','L') 

  
figure (3) 
plot(xmesh,C2(floor(nt/10),:),xmesh,C2(floor(nt/5),:),xmesh,C2(floor(nt/2),:)

,xmesh,C2(floor(nt),:)); 
title('Finite Differences Topical Delivery','FontSize',14) 
xlabel('Length(cm)','FontSize',14) 
ylabel('C/C0','FontSize',14) 
legend('t/10','t/5','t/2','t') 

  
figure (4) 
plot(xmesh,C2p(floor(nt/10),:),xmesh,C2p(floor(nt/5),:),xmesh,C2p(floor(nt/2)

,:),xmesh,C2p(floor(nt),:)); 
title('Matlab PDEPE Topical Delivery','FontSize',14) 
xlabel('Length(cm)','FontSize',14) 
ylabel('C/C0','FontSize',14) 
legend('t/10','t/5','t/2','t') 

  
figure(5) 
H2=surf(tmesh,xmesh,C2p') 
title('Matlab PDEPE Topical Delivery','FontSize',14) 
xlabel('Time(s)','FontSize',14) 
ylabel('Length(cm)','FontSize',14) 
zlabel('C/C0','FontSize',14) 
set(H2, 'linestyle', 'none') 
axis([0 tf 0 L 0 .02 0 1]) 
caxis([0 .02]) 

  
end 

 

function [c, f, s] = pdefun(x, t, u, DuDx) 

global  D1  R i D2 k 

  
if i==1 

  
c = 1; 
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f = D1 * DuDx; 
s = -R*u; 

  
else  

  

  
c = 1; 
f = (D2+(D1-D2)*(1-exp(-k*x)))*DuDx; 
s = -R*u; 

  
end 

     
end 

 

function u0 = ic(x) 

global C0 
u0 = C0 * (x==0); %assumed instantaneous release 

 

function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 

pl = 0; %flux = 0 on needle side 
ql = 1; %flux = 0 on needle side 
pr = 0; %c = 0 on corneal end 
qr = 1; %flux = 0 on corneal end 

 

 


